Security Advice for Application Developers

This document contains security advice for developers of new and existing applications that can be used as guidance for the testing of applications.  It can additionally be used as criteria for the acceptance of software systems developed by contractors.

The material is broken down into the following sections:

· Access Control

· System and Data Integrity

· Control Against Unauthorized Activity

· Privacy and Confidentiality

· Production Implementation

· Documentation

· Advisory Sites

Access Control:
1. Develop a field access scheme that will not be overridden by SQL commands.  It is important that sensitive fields be accessible to only approved personnel.  The database can provide this capability at multiple levels (system, database, table, stored procedure, etc.).

2. Program the application to require a user identification and password before allowing access.  In some situations, the user’s logon account is more than enough.

3. Enforce good passwords when accepting initial identifications.  NIH’s password policy can be found at http://irm.cit.nih.gov/policy/passwords.html.

4. Check the length of user identification and password fields for maximum size allowed.

5. For user identification control purposes store passwords encrypted.

6. Remove diskettes from the computer after loading software or data files.  Diskettes may contain boot sector viruses that activate from the diskette upon starting or restarting the computer.

7. Do not use ‘Anonymous’ accounts when performing development or maintenance.  If a malicious user gains access to an account with developer permissions everything is compromised.

8. Do not use administrative accounts unless needed.  Accurate testing and proper accountability can only be done in isolation without the benefits of system permissions.

System & Data Integrity:

9. Check all disks provided by contractors for viruses prior to use or installation.

10. Before programming install all upgrades and patches to the software (operating system, utilities, programming language, tools, etc.) to ensure a stable and secure development environment.

11. Design and develop the application so that it can be run on all machines.  Many times new software features will not execute on all machines.  Smaller hard drives, less memory, slower CPU rates, older operating systems, and older versions of software are some reasons the application may not always work.  One way to accomplish this is to write and compile modular/segmented code that can be swapped in and out of memory as needed.

12. If the application executable contains control parameters edit them for validity.  Only allow the values that the program expects.

13. If configuration files are used by an application edit the data before use to ensure that it was not compromised.

14. Do not store parameter values in registers.  Passing the value is more secure.

15. For all applications check input data (and retrieved hidden fields) for reasonableness.  The length of the input data should not exceed the field size and the content should be within expectations.  For web applications: (1) note that if a URL is passed and it has a length greater than 166 characters it may cause a Denial of Service, and (2) remove (filter out) characters that are used by HTML.  Examples are <, >, %, “, ‘, ;, (, ), +, and &.

16. When using arrays for input or internal storage program edits to ensure that the maximum allowable size is not exceeded.  This control will prevent buffer overflow problems.

17. Avoid using path names inside the program.  They may provide information about the location of key system information such as dynamically linked libraries (i.e. Makefile).

18. Program error routines to check all error return codes from system calls.  Only allow acceptable error codes.  [I.e. fork(2), suid(2), etc(), setuid() as in the rcp bug.]

19. Incorporate edits in ‘Called’ (as opposed to data entry fields) routines so that they can only accept valid input.  This will ensure that all input is controlled.

20. Do not retrieve input from a publically writable file/directory.

21. Do not use: seldom used, unusual functions or commands, or undocumented flags/arguments of the development language or operating system.  They may contain bugs or provide a means for system compromise.  Additionally, undocumented code could be removed in future releases thereby making the code useless.

22. Do not design the application to have a large number of files or have very large files.  These situations can (1) test the limits of the system and cause the system to crash, (2) fill up the hard drive especially when temporary files are created, and (3) lengthen the execution time.

23. Limit the number of processes running at one time.  A user performing activities in the background will be competing for the same memory space and CPU time.  Too many processes will tax the system and may cause it to crash [DoS].

24. SUID/SGID routines:

· Use C or Perl.  They are more secure than those written in one of the shells.

· In Perl use ‘taintperl’ when passing variables.  If compromised the converted values will not be able to execute.

· Do not program with calls using system(), popen(), execlp(), or execvp().  The system command and/or called routine could be compromised.

· Make sure original SUID/SGID routines have not been replaced.

25. If using fopen(3) program the application to set the umask.

26. Program user interrupt routines (Eg. Esc is pressed) to end the process properly.  If not handled correctly files may be left in an unprotected state.

27. For web developed applications, have the program examine any cookies that it may accept.  They may contain programmed routines/scripts.  The cookies should be filtered for the special characters <, >, %, “, ‘, ;, (, ), +, and &.

28. Avoid developing web applications with objects that have motion.  Objects with motion require CPU cycles and consequently lengthens system response time.  Many applets on a screen may cause a Denial of Service, especially for older machines.

29. Encrypt data files that contain sensitive data.

Control Against Unauthorized Activity:
30. When programming web applications don’t use ‘GET’ when sending sensitive data.  This information is viewable and will be recorded in the logs of the web server where hackers can find it.

31. For web applications don’t rely on the client to keep important data (i.e. hidden fields).  A malicious user can capture the screen, modify hidden fields, and use it to launch script or submit fake orders.  Proper edits within the application will prevent the launching of this type of unauthorized attack.

32. Do not store sensitive information in the ASP or JSP page.  Sensitive information could be username/passwords, membership directories, database connection strings, and programmer comments about the application environment.  Be aware that some wizards and Design Time Controls put this information in automatically.

33. Avoid programming applications with cookies because they may (1) provide intruders with information that can be used to attack the system, or (2) be compromised with intrusive or dangerous code.

34. Develop the application in a language so that it can be compiled instead of executed in interpreted code.  Compiling (creating an executable) prevents others from viewing the source code.  If this is not possible place the source and machine code in different directories.

35. If text and data areas are shared ensure that there is adequate boundary checking at compile time.  This will prevent execution of machine code hidden in a data area.

36. Do not accept parameters that were in prior releases of the operating system but are not documented now.  They may permit unauthorized activity.  Ex. –h option in telnet when using login.

37. For reports print an ‘End of Report’ indicator.  This control ensures that the user receives the complete report and prevents unauthorized personnel from obtaining sensitive information.

38. When programming interfaces, program control figures to ensure that entire files are transmitted and received.

39. Program the system not to use system executables, routines, or privileges that provide/require root access.

40. Depending on the security needs of the application, program the application to log all transactions when necessary.

41. Whenever practical program the application with control totals to ensure that all records exist and the content has not been altered by a third party.  This is especially important for financial applications.  Consider the needs of the system and cost concerns before implementing this control.

42. Depending upon the need, IV&V all out-sourced applications to ensure that they perform to specifications and have sufficient edits to ensure system integrity.

43. Write protect all installation disks to ensure that they are not changed.

44. Program financial applications involving invoice receipts and payments for separate reporting.  This control is required for a separation of duties.

Privacy and Confidentiality:

45. For reports that contain sensitive information have the phrase ‘Sensitive Information’ printed at the top or bottom right of each page.  Both test and production reports must be stored in a secure location with access restricted to approved personnel.  Once testing is complete developers are to shred reports that contain sensitive data if they are not important to on-going system support.  For more information about what constitutes sensitive information refer to the HHS Automated Information Systems Security Program (AISSP) Handbook (http://irm.cit.nih.gov/policy/aissp.html).

46. Web applications are not to be programmed to have cookies that record/store ‘Personally identifiable’ information.  I.e. information that can be linked to a specific individual through the use of an individual identifier, e.g., name, Social Security Number, User ID number.  If the web site contains a mechanism (cookies, web server logs, surveys, etc.) it must first have a valid Privacy Act System Notice published in the Federal Register.  For more information on these requirements or to request assistance contact the IC Privacy Act Coordinators at http://oma.od.nih.gov/about/contact/browse.asp.
47. Programming of web applications with ‘Persistent cookies’ (i.e. cookies that track activities of users over time and across different web sites) is only allowed if the following conditions are met:
· there is a compelling need to gather the data on the site, e.g., site enhancement, navigational assistance for returning visitors, etc.;

· you have received prior approval by the Secretary, DHHS, for the use of persistent cookies; 

· you provide clear and conspicuous notice about your use of cookies or other automatic means of collecting information on the site; and 
· you include on your web site appropriate and publicly disclosed privacy safeguards for how you will handle and maintain information derived from "cookies."
Production Implementation:

48. Check the development environment to ensure that all COTS products have had all security patches installed.

49. Remove installation programs or loadable kernel modules immediately upon installation.  They may provide a mechanism for compromise.

50. Do not load programs on user machines that hackers can use to their advantage.  Examples are tcpdump, top, nfswatch, and trace.  Because diagnostic programs require root access malicious users can use them to obtain intrusive information about the system and/or application.

51. When implementing an application into production verify that the operating system and all relevant COTS products have the latest upgrades and security patches.

52. If the program does not have overlays set the privilege of the executable to ‘Execute Only’.

53. Review system and data backup and restore instructions as well as checkpoint restart procedures with system support personnel to ensure good recovery procedures.

54. Have a backup made of the system and the data immediately after initial installation.  If problems arise comparing files and verifying file sizes and date stamps provide a way of checking for compromises.  It also provides a means for system recovery thereby ensuring continuity of operations.

55. Only implement systems that have had Independent Validation and Verification (IV&V), and have been certified and accredited.  This control procedure may be dependent on various external factors such as criticality of the application, costs, and urgency.

Documentation:

56. Produce an access control matrix (contains user names, types, and access permissions) that system administrators can use to manage.

57. Whenever support personnel or users leave for other employment notify the system administrators in writing/email (and carbon your supervisor) to have their access permissions deleted.

58. Keep operational, system, user, and programmer documentation up to date.  For applications developed by contractors the system, user, and programmer documentation should be required deliverables.  Current system and programmer documentation are critical to implementing changes accurately and quickly.  They should be stored in a secure place.  Updated users manuals provide good reference for new users and can provide training support.  All of this material is also invaluable during an audit.

Some Advisory Sites:

Best Practices for Secure Web Development

http://www.securityfocus.com/data/library/Best-Practices-for-Secure-Web-Development.pdf
The World Wide Web Security FAQ

http://www.w3.org/Security/faq/www-security-faq.html
Understanding Malicious Content Mitigation for Web Developers

http://www.cert.org/tech_tips/malicious_code_mitigation.html
JavaScript Security

http://developer.netscape.com/docs/manuals/js/client/jsguide/sec.htm
Java Web Server Security Problems

http://www.sun.com/software/jwebserver/faq/jwsca-2000-02.html
Apache Cross Site Scripting Info

http://www.apache.org/info/css-security
HOWTO: Prevent Cross-Site Scripting Security Issues

http://www.microsoft.com/technet/support/kb.asp?ID=252985
Q253119 HOWTO: Review ASP Code for CSSI Vulnerability

http://support.microsoft.com/support/kb/articles/Q253/1/19.ASP
Q253120 HOWTO: Review Visual InterDev Generated Code for CSSI Vulnerability

http://support.microsoft.com/support/kb/articles/Q253/1/20.ASP
Q253121 HOWTO: Review MTS/ASP Code for CSSI Vulnerability

http://support.microsoft.com/support/kb/articles/Q253/1/21.ASP
1

